Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
JAMA Netw Open ; 6(4): e238795, 2023 04 03.
Article in English | MEDLINE | ID: covidwho-2293355

ABSTRACT

Importance: Goal-concordant care is an ongoing challenge in hospital settings. Identification of high mortality risk within 30 days may call attention to the need to have serious illness conversations, including the documentation of patient goals of care. Objective: To examine goals of care discussions (GOCDs) in a community hospital setting with patients identified as having a high risk of mortality by a machine learning mortality prediction algorithm. Design, Setting, and Participants: This cohort study took place at community hospitals within 1 health care system. Participants included adult patients with a high risk of 30-day mortality who were admitted to 1 of 4 hospitals between January 2 and July 15, 2021. Patient encounters of inpatients in the intervention hospital where physicians were notified of the computed high risk mortality score were compared with patient encounters of inpatients in 3 community hospitals without the intervention (ie, matched control). Intervention: Physicians of patients with a high risk of mortality within 30 days received notification and were encouraged to arrange for GOCDs. Main Outcomes and Measures: The primary outcome was the percentage change of documented GOCDs prior to discharge. Propensity-score matching was completed on a preintervention and postintervention period using age, sex, race, COVID-19 status, and machine learning-predicted mortality risk scores. A difference-in-difference analysis validated the results. Results: Overall, 537 patients were included in this study with 201 in the preintervention period (94 in the intervention group; 104 in the control group) and 336 patients in the postintervention period. The intervention and control groups included 168 patients per group and were well-balanced in age (mean [SD], 79.3 [9.60] vs 79.6 [9.21] years; standardized mean difference [SMD], 0.03), sex (female, 85 [51%] vs 85 [51%]; SMD, 0), race (White patients, 145 [86%] vs 144 [86%]; SMD 0.006), and Charlson comorbidities (median [range], 8.00 [2.00-15.0] vs 9.00 [2.00 to 19.0]; SMD, 0.34). Patients in the intervention group from preintervention to postintervention period were associated with being 5 times more likely to have documented GOCDs (OR, 5.11 [95% CI, 1.93 to 13.42]; P = .001) by discharge compared with matched controls, and GOCD occurred significantly earlier in the hospitalization in the intervention patients as compared with matched controls (median, 4 [95% CI, 3 to 6] days vs 16 [95% CI, 15 to not applicable] days; P < .001). Similar findings were observed for Black patient and White patient subgroups. Conclusions and Relevance: In this cohort study, patients whose physicians had knowledge of high-risk predictions from machine learning mortality algorithms were associated with being 5 times more likely to have documented GOCDs than matched controls. Additional external validation is needed to determine if similar interventions would be helpful at other institutions.


Subject(s)
COVID-19 , Adult , Humans , Female , Child , Cohort Studies , Hospitalization , Hospitals, Community , Machine Learning
2.
Ann Clin Lab Sci ; 52(3): 374-381, 2022 May.
Article in English | MEDLINE | ID: covidwho-1918736

ABSTRACT

OBJECTIVE: Exploration of biomarkers to predict the severity of COVID-19 is important to reduce mortality. Upon COVID-19 infection, neutrophil extracellular traps (NET) are formed, which leads to a cytokine storm and host damage. Hence, the extent of NET formation may reflect disease progression and predict mortality in COVID-19. METHODS: We measured 4 NET parameters - cell-free double stranded DNA (cell-free dsDNA), neutrophil elastase, citrullinated histone H3 (Cit-H3), and histone - DNA complex - in 188 COVID-19 patients and 20 healthy controls. Survivors (n=166) were hospitalized with or without oxygen supplementation, while non-survivors (n=22) expired during in-hospital treatment. RESULTS: Cell-free dsDNA was significantly elevated in non-survivors in comparison with survivors and controls. The survival rate of patients with high levels of cell-free dsDNA, neutrophil elastase, and Cit-H3 was significantly lower than that of patients with low levels. These three markers significantly correlated with inflammatory markers (absolute neutrophil count and C-reactive protein). CONCLUSION: Since the increase in NET parameters indicates the unfavourable course of COVID-19 infection, patients predisposed to poor outcome can be rapidly managed through risk stratification by using these NET parameters.


Subject(s)
COVID-19 , Extracellular Traps , Biomarkers/metabolism , COVID-19/diagnosis , Cell-Free Nucleic Acids/blood , Cell-Free Nucleic Acids/metabolism , Extracellular Traps/metabolism , Histones/blood , Histones/metabolism , Humans , Leukocyte Elastase/blood , Leukocyte Elastase/metabolism , Neutrophils/metabolism , Prognosis
3.
Med Care ; 60(5): 381-386, 2022 05 01.
Article in English | MEDLINE | ID: covidwho-1713786

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has challenged the accuracy and racial biases present in traditional mortality scores. An accurate prognostic model that can be applied to hospitalized patients irrespective of race or COVID-19 status may benefit patient care. RESEARCH DESIGN: This cohort study utilized historical and ongoing electronic health record features to develop and validate a deep-learning model applied on the second day of admission predicting a composite outcome of in-hospital mortality, discharge to hospice, or death within 30 days of admission. Model features included patient demographics, diagnoses, procedures, inpatient medications, laboratory values, vital signs, and substance use history. Conventional performance metrics were assessed, and subgroup analysis was performed based on race, COVID-19 status, and intensive care unit admission. SUBJECTS: A total of 35,521 patients hospitalized between April 2020 and October 2020 at a single health care system including a tertiary academic referral center and 9 community hospitals. RESULTS: Of 35,521 patients, including 9831 non-White patients and 2020 COVID-19 patients, 2838 (8.0%) met the composite outcome. Patients who experienced the composite outcome were older (73 vs. 61 y old) with similar sex and race distributions between groups. The model achieved an area under the receiver operating characteristic curve of 0.89 (95% confidence interval: 0.88, 0.91) and an average positive predictive value of 0.46 (0.40, 0.52). Model performance did not differ significantly in White (0.89) and non-White (0.90) subgroups or when grouping by COVID-19 status and intensive care unit admission. CONCLUSION: A deep-learning model using large-volume, structured electronic health record data can effectively predict short-term mortality or hospice outcomes on the second day of admission in the general inpatient population without significant racial bias.


Subject(s)
COVID-19 , Hospices , Algorithms , Cohort Studies , Hospitalization , Humans , Inpatients , Machine Learning , Retrospective Studies , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL